まずは命題論理の証明の課題。勿論、tautoとかで一発だと思いますが、練習問題なので入門者は自力で解こう。
Admitted.
を消して証明を書く事が期待されています。
Section Prop_Logic.
Lemma Coq_01 : forall A B C:Prop, (A->B->C) -> (A->B) -> A -> C.
Admitted.
Lemma Coq_02 : forall A B C:Prop, A /\ (B /\ C) -> (A /\ B) /\ C.
Admitted.
Lemma Coq_03 : forall A B C D:Prop, (A -> C) /\ (B -> D) /\ A /\ B -> C /\ D.
Admitted.
Lemma Coq_04 : forall A : Prop, ~(A /\ ~A).
Admitted.
Lemma Coq_05 : forall A B C:Prop, A \/ (B \/ C) -> (A \/ B) \/ C.
Admitted.
Lemma Coq_06 : forall A, ~~~A -> ~A.
Admitted.
Lemma Coq_07 : forall A B:Prop, (A->B)->~B->~A.
Admitted.
Lemma Coq_08: forall A B:Prop, ((((A->B)->A)->A)->B)->B.
Admitted.
Lemma Coq_09 : forall A:Prop, ~~(A\/~A).
Admitted.
End Prop_Logic.
解答例は例えばこれとか。
1 comment:
Great reeading your post
Post a Comment